又新发现一个非常有意思的房间声学特性,cumulative energy time,累计能量时间
https://www.aes.org/e-lib/browse.cfm?elib=17839
Floyd Toole的这篇文献,还是非常好的,推荐一下
混响时间,起源于音乐厅和礼堂的典型扩散声场。
音乐厅是表演的一部分!!!
使用近似管弦乐团的全向声源测量,RT60的数值范围为1~2 秒左右。
在家里,自然扩散的声场是不可能存在的,也不需要。
尽管测量仪器为我们提供了混响时间的数值,大约0.2~0.5秒。但测量的是一系列逐渐衰减的反射衰减时间。
使用“混响时间”这个术语,是因为大家对它比较熟悉,但请记住实际测量的是什么。
然后,提到了这个更好的特性,累计能量时间,cumulative energy time,直达声到达后,声场上升到稳态水平的时间。
RT is undoubtedly useful for evaluating highly reflective venues, but there may be a better metric for our purposes: cumulative energy time—the time taken after the arrival of the direct sound for the sound field to rise to the steady-state level. This is a much shorter time than the corresponding RT and seems to more directly address the perceptual processes when brief sounds are involved. For example, Fig. 8(b) shows that in a cinema with a 2.5 s (2500 ms) RT at 50 Hz, a level within 2 dB of steady state is reached in 90 ms. At 500 Hz, RT is 800 ms and the cumulative energy time is 25 ms. These are enormous differences, and although RT is a related parameter, it is far removed from the temporal events that are likely to matter. Events very early in the RT decay data could be relevant but a new form of interpretation would be required.
关于累计能量时间,这篇报告里有一些测量比较,还挺有意思的
https://f.hubspotusercontent00.net/hubfs/5253154/er0994-2014.pdf
大概看下来的感觉是,混响时间越短的房间,低频声音达到稳态水平(-2dB范围内)的时间就越短吧
虽然,目前还是“固执”粗浅的认为,音色、频域特征,是低频听感的“速度”“快慢”的第一大原因。
但从这个“累计能量时间”的时域及声压级的数值上看,应该也是人耳可听阈值范围内的,可能可以排到第二大原因了吧。
|